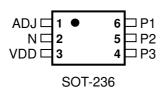
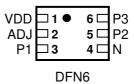


3-Channel Constant Current Driver

Product Description


The SCT2001 is designed to drive multiple LEDs in series from a high input voltage rail. The SCT2001 contains three output channels which are regulated to sink constant current for driving LEDs of large range forward voltage (VF) variations.


In applications, users can simply adjust the sink current from 10 mA to 45 mA through an external resistor RADJ to control the light intensity of LEDs. The SCT2001 guarantees to endure maximum DC 24V at each channel.

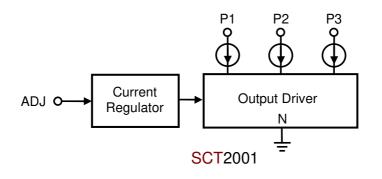
Features

- Three constant-current outputs rate at 24V
- Constant current range:10 45mA
- Wide operating operation by adding resistor from supply voltage
- ±2%(typ) current matching between outputs
- ±4%(typ) current matching between ICs
- Smart dimming control via ADJ pin
- Low drop-out output 0.3V@20mA
- Excellent current regulation to load, supply voltage and temperature
- All output current are adjusted through one external resistor
- Hysteresis input for ADJ external resistor
- Built-in power on reset and thermal protection function
- Package: Small 2mmx2mm DFN and SOT-236
- Applications: Mini light bar, LED backlight, LED lamp

Pin Configurations

Terminal Description

Pin I	Pin No.		Function
SOT-236	DFN6	Pin Name	FUNCTION
1	2	ADJ	Input terminal used to set up all input current
2	4	N	Current output / Ground terminal
3	1	VDD	Supply voltage terminal
4	6	P3	Current input terminal 3
5	5	P2	Current input terminal 2
6	3	P1	Current input terminal 1


Ordering information

Part	Marking	Package	Unit per reel(pcs)
SCT2001AS1G	2001	Green SOT-236	3000
SCT2001ADNG	01A	Green DFN6	3000

StarChips Technology, Inc.

2F,No 5, R&D 1st Rd, Hsinchu Science Park, Hsinchu 30076, Taiwan ROC. Tel : +886-3-577-5767 Ext 555 Fax: +886-3-577-6575 E-mail : service@starchips.com.tw

Block Diagram

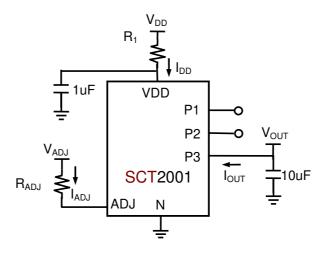
Maximum Ratings (T_A = 25°C)

Characteristic		Symbol	Rating	Unit
Supply voltage(DC)		V _{DD}	24	V
Input voltage		V _{ADJ}	$-0.4 \sim V_{DD} + 0.4$	V
Output current		I _{PN}	60	mA
Output voltage		VP	24	V
Total output current		I _N	200	mA
Power dissipation (on PCB)	SOT-236	PD	0.64	W
Fower dissipation (on FCB)	DFN6	ГD	2.16	vv
Thermal resistance (on PCB)	SOT-236	Б	195	°C /W
DFN6		R _{TH(j-a)}	58	0700
Operating temperature	T _{OPR}	-40~+85	С°	
Storage temperature				°C

The absolute maximum ratings are a set of ratings not to be exceeded. Stresses beyond those listed under "Maximum Ratings" may cause the device breakdown, deterioration even permanent damage. Exposure to the maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions (T_A= -40 to 85°C unless otherwise noted)

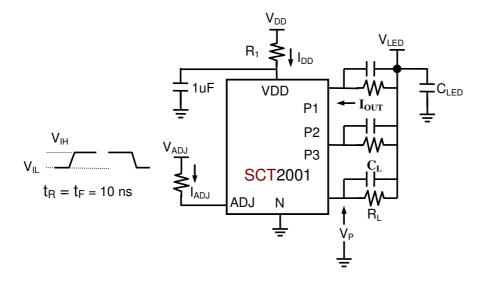
Characteristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage(DC)	V _{DD}	-	5	-	24	V
Output voltage	V	Current OFF	-	-	24	V
Output voltage	V _P	Current ON	-	1	4	V
Output current	I _{PN}	DC test circuit	10	-	45	mA
Dimming pulse width	tw	V _{DD} =5-24V	2	-	-	us
Dimming rise time	t _R	$V_{DD}=5-24V$	-	-	1	us
Dimming fall time	t⊢	$V_{DD}=5-24V$	-	-	1	US

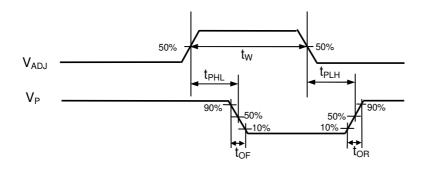

1. The output current keep constant in range of 10-45mA if V_{OUT} =1V.User can minimize V_{OUT} to reduce power dissipation according to used current, e.g., set V_{OUT} to 0.3V if I_{OUT} =20mA.

2. The maximum V_P is package thermal limited, user should keep VP under maximum power dissipation.

Electrical Characteristics (V_{DD}=5-24V, V_{ADJ}=5V, R₁=2K, T_A=25°C unless otherwise specified)

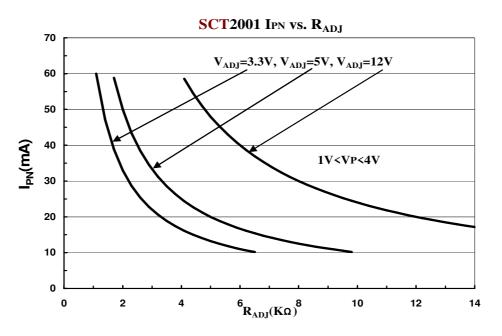
Characteristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply current	I _{DD}	$V_{DD}=5, R_1=2K$	-	1	1.5	mA
ADJ input voltage	VIH	-	2.5	-	-	V
ADJ IIIput voltage	VIL	-	-	-	20	mV
ADJ input current	I _{ADJ}	V _{ADJ} =5V, R _{ADJ} =4.8K	-	1	-	mA
Output leakage	I _{PNL}	$V_{ADJ}=0V, V_{P}=24V,$	-	-	0.5	uA
Output current	I _{PN}	R _{ADJ} =4.8K	-	20	-	mA
Current channel skew	dl _{PN1}	$V_P=1V, R_{ADJ}=4.8K$	-	±2	±3	%
Current chip skew	dl _{PN2}	$V_P=1V, R_{ADJ}=4.8K$	-	±3	±4	%
Line regulation I _{PN} vs. V _{DD}	%/dV _{DD}	5V < V _{DD} < 24V, R ₁ =2K V _P >1 V, R _{ADJ} =4.8K	-	-	±1	%/V
Load regulation I _{PN} vs. V _P	%/dV _P	1V < V _P < 4V, I _{PN} =20mA, R _{ADJ} =4.8K	-	-	±1	%/V
Thermal shutdown	Τ _Η	Junction Temperature	-	160	-	°C
	TL		-	110	-	°C


Test Circuit for Electrical Characteristics

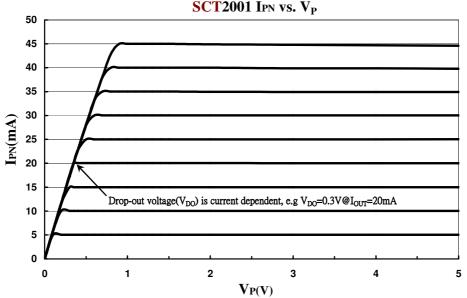

Characteris	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Propagation delay time ("L" to "H")	$V_{ADJ} - V_P$	t _{PLH}	$V_{LED} = 5V$ $V_{IH} = 5V$	-	200	400	ns
$\begin{array}{c c} \mbox{Propagation delay time} \\ ("H" to "L") \end{array} V_{ADJ} - V_{P} \end{array}$		t _{PHL}	V _{IL} = GND V _{ADJ} = 5V	-	200	400	ns
Pulse width	V _{ADJ}	t _w	$R_{ADJ} = 4.8 K\Omega$	2	-	-	us
Output rise time of I _{PN}		t _{OR}	$R_1 = 2K\Omega$	-	200	400	ns
Output fall time of IPM	t _{OF}	$C_1 = 1 u F$ $R_L = 180 \Omega$ $C_L = 10 p F$ $C_{LED} = 47 u F$	-	200	400	ns	

Switching Characteristics (V_{DD}=5-24V, R₁=2K, T_A=25°C unless otherwise noted)

Test Circuit for Switching Characteristics

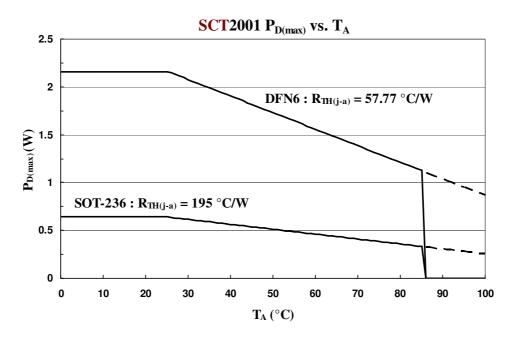


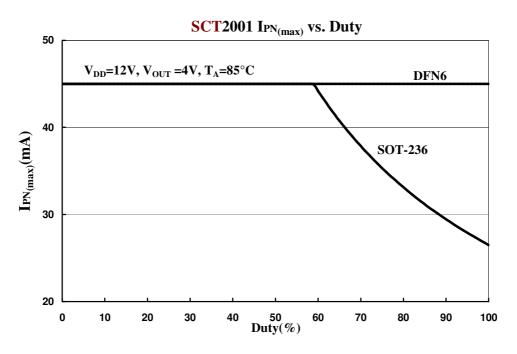
Timing Waveform


Adjusting Output Current

The sink current (I_{PN}) are set by one external resistor at pin ADJ. The relationship between I_{PN}, resistance R_{ADJ} and reference voltage V_{ADJ} is shown as the following figure. V_{ADJ} connected to a stable reference voltage is suggested. Furthermore, I_{PN} could be estimated by $I_{PN}\left(mA\right)=20^{*}V_{ADJ}\,/$ ($R_{ADJ}\left(K\Omega\right)+0.2$)

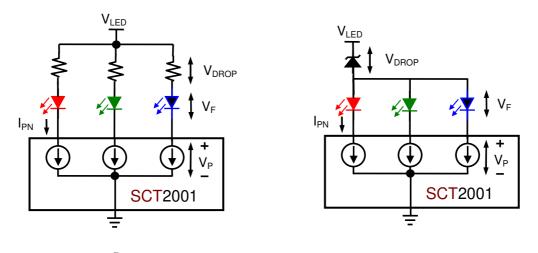
Output Characteristics


The current characteristic of output curve is flat. The output current can be kept constant regardless of the variations of LED forward voltage when $V_P > V_{DO}$ (drop-out voltage). The relationship between I_{PN} and V_P is shown below. The output voltage should be kept as low as possible to prevent the SCT2001 from being overheated.


Power Dissipation

The maximum power dissipation ($P_{D(max)}$) of a semiconductor chip varies with different packages and ambient temperature. It's determined as $P_{D(max)}=(T_{J(max)} - T_A)/R_{TH(j-a)}$ where $T_{J(max)}$: maximum chip junction temperature is usually considered as 150°C, T_A : ambient temperature, $R_{TH(j-a)}$: thermal resistance. Since P=IV, for sinking larger I_{PN}, users had better add proper voltage reducers on outputs to reduce the heat generated from the SCT2001.

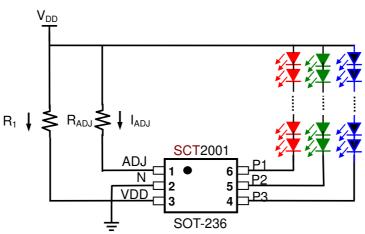
Limitation on Maximum Output Current


The maximum output current vs. duty cycle is estimated by: $I_{PN(max)}=(((T_{J(max)}-T_A)/R_{TH(j-a)})-(V_{DD}*I_{DD}))/V_P/Duty/N \text{ Where } T_{J(max)}=150^{\circ}\text{C}, \text{ N=3 (all ON)}$

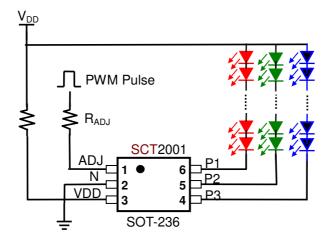
Load Supply Voltage (Vie)

The SCT2001 can be operated very well when V_P ranges from 1V to V_{P_MAX}. However, it is recommended to use the lowest possible supply voltage or set a voltage reducer to reduce the V_P voltage, at the same time reduce the power dissipation of the SCT2001. The following diagram shows ways to lower down the output voltage by adding additional resistor or zener diode, thus

 $V_P = V_{LED} - V_{DROP} - V_F$.

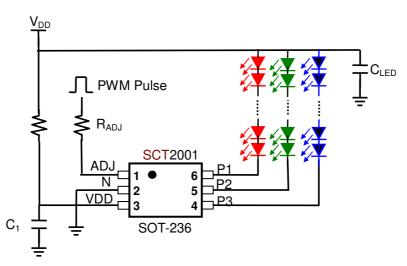


Over Temperature Shutdown


The SCT2001 contains thermal shutdown scheme to prevent damage from over-heating. The internal thermal sensor turns off input current of all channels when the die temperature exceeds +160°C. The LEDs are turned on again when the die temperature drops below +110°C. During the thermal shutdown process, the LEDs look blinking since it is turned OFF then ON periodically.

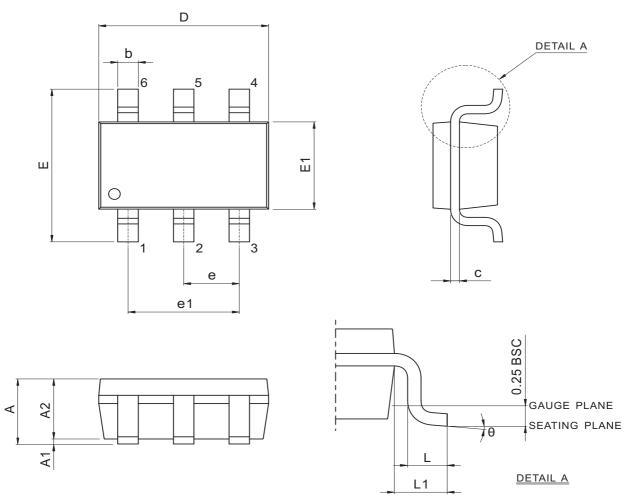
Typical Application Circuits

(1) RGB LED Lighting


The SCT2001 can operate with wide supply input range by shunting a resistor R₁ to V_{DD}. The calculation of R₁ is approximately expressed by:R₁= $(V_{DD}-5V)/I_{DD(max)}(1.5 \text{ mA})$, the R₁ at least 2K from supply input to the SCT2001 is required. For example, if V_{DD}=24V, set R₁ = $(24V-5V)/I_{DD(max)}(1.5 \text{ mA}) = 12.5\text{K}$. If V_{DD}=5V, set R₁=2K directly. (2) Lighting with dimming control

PCB Design Considerations

Use the following general guide-line when designing printed circuit boards (PCB) : It is recommended to place capacitors $C_1 = 0.1 \mu$ F and $C_{LED} = 10 \mu$ F as shown.


Locate the decoupling capacitor 0.1μ F as close to the SCT2001 as possible. The necessary capacitance depends on the LED load current and dimming frequency. Inadequate VDD decoupling can cause timing problems, and very noisy LED supplies can affect LED current regulation.

Maximizing the width and minimizing the length of VDD and GND trace improves efficiency and ground bouncing. Adding a capacitor C_{LED} greater than 10uF beside the LED is recommended.

Package Dimension

SOT-236

Symbol	Di	mension (m	m)	Di	mension (m	nil)	
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.45	-	-	57.1	
A1	0.00	-	0.15	0.0	-	5.9	
A2	0.90	1.15	1.30	35.4	45.3	51.2	
b	0.30	-	0.50	11.8	-	19.7	
С	0.08	-	0.22	3.2	-	8.7	
D		2.90 BSC			114.2 BSC		
E		2.80 BSC		110.2 BSC			
E1		1.60 BSC			63.0 BSC		
е		0.95 BSC			37.4 BSC		
e1		1.90 BSC			74.8 BSC		
L	0.30	0.45	0.60	11.8	17.7	23.6	
L1	0.60 REF				23.6 REF		
θ	0°	4°	8°	0°	4°	8°	

DFN6-2x2 b е 6 5 4 5 6 4 PIN1 ID AREA PIN1 ID E2 ш 1 2 3 3 2 1 D D1 e1 ∢ Ā Å3 □ y c SEATING PLANE

Symbol	Diı	mension (m	m)	Dimension (mil)			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	0.70	0.75	0.80	27.6	29.5	31.5	
A1	0.00	0.02	0.05	0.0	0.8	2.0	
A3		0.20 REF			7.9 REF		
b	0.20	0.30	0.40	7.9	11.8	15.7	
D	1.9	2.00	2.10	74.8	78.7	82.7	
D1	0.00	1.20	1.25	0.0	47.2	49.2	
E	1.9	2.00	2.10	74.8	78.7	82.7	
E2	0.00	0.60	0.65	0.0	23.6	25.6	
е	0.65 BSC				25.6 BSC		
e1	1.30 BSC				51.2 BSC		
L	0.40 REF				15.7 REF		
у	-	-	0.08	-	-	3.1	

Revision History

Data Sheet Version	Remark
V02_03	Add R1 to VDD pin at testing & application circuit
V03_01	Rename pins

Information provided by StarChips Technology is believed to be accurate and reliable. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Starchips can not assume responsibility and any problem raising out of the use of the circuits. Starchips reserves the right to change product specification without prior notice.

StarChips Technology Inc.